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Abstract 

The field of Active Networks has seen exciting developments over the past few years. 

The Active Node architecture describes an active node as a collection of a NodeOS, a 

runtime Environment, an execution environment (EE) and services deployed therein. This 

thesis describes the integration of University of Utah’s OSKit (NodeOS), OCaml 

(Runtime) and the University of Pennsylvania’s PLAN (EE). It is now time to pull 

together these components into an integrated system and establish its performance and 

behavior. In this thesis, we present the integration of the OCaml language system with 

OSKit. We use this foundation to build the PLAN execution environment on OSKit and 

examine its performance. 
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Chapter 1 

Introduction 

 
The rapid growth in the popularity of the Internet has brought about a need for faster 

and newer services. The traditional network infrastructure is unsuitable for fast 

deployment of services. Services in the existing network are rigidly built into the 

embedded software and hence are subject to a very slow standardization process. Efforts 

such as RSVP and IPv6 stand testimony to this statement. It is out of this need that a new 

paradigm known as Active networks takes shape. It involves the ability to program a 

network node dynamically. Such a network, known as Active network, would be able to 

better accommodate the need for faster services. Hence it will also become possible to 

deploy application-specific protocols, which the application will then be able to take 

advantage of.  

 

The packets carried in an Active network are different from those of a traditional 

network. These special packets, known variously as SmartPackets, capsules etc., contain 

additional information in the form of program code. The nodes of an Active Network 

(called Active Nodes) are programmable in the sense that when a SmartPacket reaches an 

Active Node, the code inside the SmartPacket is extracted and executed.  

 

The functionality of an active network node is divided among the Node Operating 

System (NodeOS) and the Execution Environments (EEs). Several active network 

prototypes, known as Execution Environments, exist. They include ANTS [16], PLAN 
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[5] and Magician [17]. Each EE exports an API that can be leveraged by Active 

Applications (AAs) to program the active node. It is possible for multiple EEs to exist in 

a single active node. These EEs offer services such as dynamic loading that enable 

SmartPackets to be loaded into the node. Thus new services can be deployed on the fly. 

Each of these differ in their details, but they all define the interfaces required by an active 

network that runs at user-level on general purpose operating systems. The EE has an 

interface to the NodeOS by means of which the active node can be modified according to 

the needs of the AA.  

  

The node operating system of an Active Network deals with how packets are 

processed and how local resources are managed.  It provides adequate support for 

services deployed and controls the resources consumed by the various components of an 

Active Node. It has the capability to terminate an EE or an AA if it believes that certain 

resource limits such as CPU usage or bandwidth consumed have been exceeded. The 

NodeOS also encompasses the Security Enforcement engine that authenticates and 

verifies the credentials of the entity that loads code onto the active node. 

 

The NodeOS exports an interface to the EEs that is described in a companion 

document [7]. The NodeOS Interface defines the minimal fixed point for the Active 

Network architecture. Knowledgeable EEs should be able to exploit the advanced 

functionality provided by this interface although it should be possible for EEs to exist on 

just the minimal services.   
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1.1 Motivation 
 

In the past few years, a number of Execution Environments have been developed which 

have explored the concept of Active Networks. Most of these EEs are written in JavaTM, 

which seems to be a popular language of implementation. However, to ensure that an 

active network execution environment is able to maintain state of correctness it is 

necessary to ensure that a given code does not change the system integrity of an active 

node. The PLAN EE developed by the University of Pennsylvania, as part of the 

SwitchWare [11] project is a step in this direction.  It provides a type safe environment 

that ensures that all programs will terminate. The OSKit is a toolkit provided by the 

University of Utah to help build custom kernels that can be linked against the 

components provided. It can be used to custom build language kernels that can be 

directly booted over the hardware.  The OSKit provides us with a simple OS structure 

that being highly modular and separable is easy to understand. It will be a part of our 

effort to build the PLAN EE over OSKit. Preliminary integration of the PLAN EE with 

the Moab NodeOS [6] will also be explored. 

 

1.2 Proposed Study 
 

We propose to integrate the PLAN EE from the University of Pennsylvania [5] with 

Moab/OSKit developed at the University of Utah [6]. This represents necessary work in 

the direction of building a fully integrated active node. The PLAN EE is written in 

OCaml, which is an object oriented implementation of the Caml dialect of ML. The 

OSKit is a set of modular libraries that can be used to build language kernels in a single 
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address space directly over hardware. The Moab NodeOS (from the University of Utah) 

is a resource control mechanism that provides the NodeOS interface API to EEs. 

Bringing these components together will help us study the performance and behavior of 

such an integrated node. This, we believe, is the way forward to build a large active 

network testbed.  

 

1.3 Organization of the thesis 
 

Chapter 2 discusses related work in the area of development of integrated active nodes. 

This is followed by Chapter 3, which explains the various components of our integrated 

node, namely the PLAN EE, OSKit kernel and the Moab NodeOS. Chapter 4 delves into 

the integration of these components and issues involved therein. The implementation of 

the PLAN active router is discussed here. The tests performed and the results obtained 

are discussed in Chapter 5. Finally, in Chapter 6 conclusions have been drawn based on 

the test results and possible future work has been suggested. 
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Chapter 2 

Related Work 

2.1 RCANE: Resource Controlled Active Network Architecture  
 

In an active network, hostile or careless code could potentially consume all available 

resources at a node. The task of allocating resources to each flow according to a QoS 

policy is complicated by lack of knowledge about the behavior of the user-supplied code. 

The RCANE design [20] provides for protection against such possibilities at two levels – 

it limits what the code can do and how much effect its activities can have on the node.  

 

RCANE, developed at the University of Cambridge, UK, is a resource control 

framework developed to help active network nodes control the services deployed on these 

nodes. It supports an active network programming model over the Nemesis Operating 

system, providing robust control and accounting of system resources, including CPU and 

I/O scheduling, and garbage collection overhead. The first requirement is achieved by 

making use of a safe and restricted language like OCaml. Fine-grained scheduling and 

accounting help in controlling the resources consumed by a particular application. 

 

The RCANE paradigm leverages software protection vis-à-vis hardware. It 

depends on a safe language to do much of the protection checking at compile time or load 

time. This allows for much lighter-weight barriers between two principals (entities 

executing code on the node).  
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A Session is the primary abstraction for resource control in the RCANE framework. It 

represents a principal with resources reserved on the node. This is similar to the 

flow/domain model of the NodeOS specification. Session creation requires the owner of 

the session to present his credentials, resources required and the code at the time of 

creation. Resources include CPU, network I/O and memory usage. The concept of a 

virtual processor (VP), threads and threadpools represent CPU usage. A VP represents a 

regular guaranteed allocation of CPU time, according to some scheduling policy.  Current 

NodeOS implementations make use of threads and threadpools only. The network flows 

associated with RCANE are mapped directly to Nemesis I/O channels. Each channel is 

associated with a demultiplexing key and buffers. Packets are demultiplexed by the keys 

associated with these channels and then handed off to the receive handler. 

  

Memory managed by RCANE falls into four categories: network buffers, thread 

stacks, dynamically loaded code and heap memory. Network buffers and thread stacks 

are accounted to the owning session in proportion to the memory consumed. Code 

modules kept in memory may be charged depending on the system specific policy. 

Different heaps are recommended for different sessions so that Garbage Collection (GC) 

work for one session does not affect the other.  

 

2.2 Janos: A Java-oriented OS for Active Network Nodes 
 

The major goal of Janos [8] is to provide comprehensive and precise resource control 

over the execution of untrusted Java bytecode in an active network. The Janos 

architecture and the corresponding DARPA active network node architecture are shown 
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in Figure 2.1. Moab forms the NodeOS layer and the EE layer is comprised of the 

JanosVM, the Janos Java NodeOS, and the ANTS with Resource Management (ANTSR). 

The Active applications (AAs) are hosted on this foundation. The ANTSR runtime relies 

on Java bindings to the NodeOS API, while the JanosVM relies on the C implementation 

and provides the Java bindings.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1 Janos Architecture 
   
Janos leverages the type-safety of Java to provide memory safety and allows safe, fine-

grained resource sharing across the user/kernel boundary. It differs from previous Java 

operating systems in its customization for the active network domain. JanosVM is the 

virtual machine that accepts Java bytecodes and executes them on Moab. It provides 

access to underlying NodeOS API through simple Java wrapper classes. In terms of 

resource controls, the CPU and network controls offered by Moab remain unchanged. 

The major changes introduced are the per-domain memory control through the use of the 

garbage collection mechanism. It no longer supports the shared heaps of KaffeOS. 

ANTSR 

 
 

Janos Virtual Machine 
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Applications 
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Instead it supports separate GC threads for each heap. This provides for strict separation 

of flows. 

 The ANTSR system, based on ANTS 1.1, provides the interfaces necessary to 

execute untrusted, potentially malicious Active Applications. The use of the NodeOS API 

with ANTS helps add many significant features to it. These include domain-specific 

threads, separate namespaces, improved accounting of code loading and a simple 

administrator’s console.  

 

2.3 Magician/Scout 
 

One of the early experiments in the field of integrated nodes was the integration of the 

Magician EE [17] with the Scout OS [18] and Joust VM [19]. This built up an active 

network node from the ground up that runs stand alone on PC’s.  

  

Magician is a toolkit for creating a prototype active network, developed at the 

University of Kansas. Magician provides a platform on which active applications can run, 

along with tools and interfaces for creating new SmartPackets that deploy new services 

and protocols in the active network. It is implemented in JavaTM and uses UDP/IP for 

transport and routing. 

  

Developed at the University of Arizona, Scout is an operating system architecture 

that is designed specifically to accommodate the needs of communication-centric 

systems. Scout has a modular structure that is complemented by an abstraction called the 

path, which is essentially an extension of a network connection into the host operating 
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system. The modular structure enables the efficient building of systems that are tailored 

precisely to the requirements of a particular application. Scout employs paths as the 

primary means to communicate data through a system. 

  

Joust, is a configuration of Scout that includes a module that implements the Java 

Virtual Machine (JVM) along with those modules that implement the underlying services 

upon which JVM depends, such as TCP, IP, NFS, etc.  

  

The idea behind building such an active network kernel on a modular, 

communication-oriented operating system (OS) such as Scout was that - for network 

intensive applications such as active networks, it is often the entire data-path that forms 

the application. Knowing the specific purpose for which an active network kernel is 

intended, allows the building of such a specialized system wherein computation does 

occur, but is incidental to moving data efficiently throughout the system. Such tailoring 

of resources to the application’s specific needs has a direct, positive consequence on its 

performance. 
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Chapter 3 

Components of Integrated Active Node 

 
3.1 PLAN System 
 
The PLAN system is part of the SwitchWare [11] active networking project at the 

University of Pennsylvania. Its architecture contains two basic components. It defines a 

high level interoperable layer wherein lie the active packets based on a new language 

called PLAN. Below this layer, exists a layer that provides node-resident services. These 

node resident services can be written in a general purpose programming language such as 

Java or OCaml. A typical PLANet (PLAN Active network) node would look as in Figure 

3.1.  

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
    
 

Figure 3.1 PLANet node architecture 
 
 
 

 PLAN program(s) 

 PLAN interpreter 

Routing Extension

 IP Ethernet
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The PLAN architecture [5] is designed to provide programmability at two levels. It can 

support both programmable (or active) packets and downloadable router extensions. This 

basic structure, as discussed below, follows a model of distributed computing that is 

based on remote evaluation. This sort of communication is asynchronous and unreliable. 

The extensible router infrastructure is used to provide support to heavyweight operations. 

These extensions can be dynamically installed, but are not mobile once installed. 

 
3.1.1 The PLAN language 
 
An active networking approach must tread a fine line among the following issues: 

flexibility, safety and security, performance and usability. Increased flexibility is the 

primary motivation for active networks. PLAN does not have to be too general because it 

adopts a two-level approach. This is because the service language helps in providing 

general-purpose expressibility. Hence PLAN has been able to express itself in ‘little’ 

programs and acts as glue between router resident services. By safety, we mean reducing 

the risk of mistakes or unintended behavior, and security encompasses the concept of 

privacy, integrity and availability in the face of malicious attack. To address some of 

these issues, PLAN was made a functional, stateless and strongly typed language. This 

ensures that PLAN programs are pointer-safe and concurrently executing programs do 

not interfere with each other. Since network operations involve changing the state of 

nodes in some way, some sort of authentication is required. However, packet-based 

authentication is very costly and hence PLAN pushes these features on to the node-

resident services. PLAN programs are also statically typeable and are guaranteed to 

terminate as long as they use services which terminate. Basic error-handling facilities are 

also provided. These help in improving the usability of PLAN programs. 
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PLAN design is based on remote evaluation, rather than on remote procedure call. 

Specifically, child active packets may be spawned and asynchronously executed on  

 

 

 

 

 

 

 

 

Figure 3.2 The PLAN packet format 
 

remote nodes. Each packet may further create packets provided it adheres to a global 

resource bound. The PLAN packet format is shown in Figure 3.2 

 

The primary component of each packet is its chunk (code hunk), which consists of 

code, a function to serve as an entry point, and values to serve as bindings for the 

arguments of the entry function. The EvalDest field specifies the active node on which 

this packet is to be evaluated. The packet is transported to the EvalDest active node by 

means of a routing function specified by the field RoutFun. The resource bound field 

specifies the total number of hops the packet and its subsequent child packets can take 

before evaluation. The source and handler fields represent the source node of initial 

packet and the handler function for error handling respectively. A host application 

Field Explanation

chunk code Top-level functions and values
            entry point First function to execute
            Bindings Arguments for entry function
EvalDest Node on which to evaluate
RB Global resource bound
RoutFun Routing function name
Source Source node of initial packet
Handler Function for error-handling
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constructs the PLAN packet. It then injects it into the local PLAN router via a well-

known port, say 3324. Remote execution is achieved by making calls to network 

primitives such as OnRemote or OnNeighbor. These are services written at the lower 

level in a general-purpose programming language. A PLAN program can be better 

explained by a simple Ping example as shown in Figure 3.3. 

 
 
 
 
 
 

 
 

 

 

Figure 3.3 PLAN ping code 
 

This program is placed in an active packet that executes ‘ping’ at the source. The 

arguments for the ping function include the source and destination active nodes. The 

program then proceeds to execute as follows: If the packet is not at the destination, the 

OnRemote call is activated which creates a new packet and sends it over to the 

destination using the defaultRoute, which is RIP here. Once the packet is at the 

destination, it invokes another OnRemote that executes an ‘ack’ function at the source. 

This completes the required operation for ping. 

 
 The PLAN language is characterized by the semantic basis provided by the theory 

of lambda calculus. However, in order not to compromise on security, PLAN does not 

include many features common to functional languages. In keeping with this idea, PLAN 

fun ping (src:host, dest:host) : unit =

  if (not thisHostIs(dest)) then 

    OnRemote(|ping|(src,dest), dest, getRB(), defaultRoute)

  else 

    OnRemote(|Ack| (), src, getRB(), defaultRoute) 

 

fun ack() : unit = print(“Success”) 
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has simple programming constructs: statement sequencing, conditional execution, 

iteration over lists with fold and exceptions. The lack of recursion and unbounded 

iteration (as well as the monotonically decreasing resource bound) ensure that all PLAN 

programs terminate. Its type system is strong and static but is dynamically checked. This 

arises from the necessity of distributed programming wherein static checking is necessary 

for debugging purposes whereas dynamic checking ensures safety of the code. It also 

helps that PLAN does not provide user-defined mutable state, although some aspects of 

PLAN, such as the resource bound, are stateful. In addition to the general exception 

based error handling mechanism, PLAN also provides an abort service that allows the 

program to execute a chunk on the source node. A major feature of PLAN is that chunks 

can be encapsulated in one another providing for protocol layering within PLAN.  

 
 Another issue is the choice of implementation language for PLAN at the service 

level. Such a language must to able to provide services to make code dynamically 

loadable. To enable such modules to work on heterogeneous types of machines, it must 

be portable. Thirdly, in order to provide guarantees for safe execution and termination it 

must be a safe language. PLAN has been implemented in OCaml [3] and the Pizza 

extension [21] to Java. Our efforts at an integrated node revolve around the use of OCaml 

as a safe language. Hence we will be discussing it alone. 
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3.1.2 OCaml 
  
OCaml provides several of the design goals required for a service level language. Some 

of these have been outlined above. It has been developed at INRIA, Rocquencourt within 

the “Cristal project” group. The OCaml language system is an object-oriented 

implementation of the Caml dialect of ML.  

  

All programming in OCaml is dominated by the use of functions. These first-class 

functions can be passed to other functions, received as arguments or returned as results. A 

powerful type system is another inherent feature of OCaml. It comes along with 

parametric polymorphism and type inference. Functions also may have polymorphic 

types. It is possible to define a type of collections parameterized by the type of elements, 

and functions operating over such collections. For instance, the sorting procedure for 

arrays is defined for any array, regardless of the type of its elements. 

  

OCaml provides several common data-types such as int, float, char and string. 

Other data-types that include records and variants are standard features of functional 

languages. OCaml’s type system is extensible by using user-defined data-types. New 

recursive data-types can be defined as a combination of records and variants. More 

importantly, functions over such structures can be defined by pattern matching: a 

generalized case statement that allows the combination of multiple tests and multiple 

definitions of parts of the argument in a very compact way. 
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OCaml is a safe language. The compiler performs many sanity checks on 

programs before compilation. That’s why many programming errors such as data type 

confusions, erroneous accesses into compound values cannot happen in Caml. The 

compiler carefully verifies all these points, so that data accesses can be delegated to the 

compiler code generator and thus ensures that data manipulated by programs may never 

be corrupted. The perfect integrity of data manipulated by programs is hence granted for 

free in Caml. These features are extremely important for an active network where mobile 

code generated at one end gets evaluated on other machines.  

  

Another feature of relevance to the active networking community would be the 

strong type safety provided by OCaml. OCaml is statically type-checked, hence there is 

no need to add type information in programs (as in Pascal, or C). Type annotations are 

fully automatic and handled by the compiler.  

  

The OCaml compiler frees the programmer of all memory management. All 

memory allocations and de-allocations are handled automatically by the compiler. This 

way the programs are much safer, since spurious memory corruption never occurs. The 

memory manager works in parallel with an application, thereby improving the efficiency 

of execution of OCaml bytecodes. 

  

In addition to these features, OCaml provides an expressive class-based object 

oriented layer that includes traditional imperative operations on objects and classes, 
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multiple inheritance, binary methods, and functional updates. Error handling is achieved 

by an exception mechanism as in other object-oriented languages. 

  

The OCaml distribution comes with general-purpose libraries that facilitate 

arbitrary precision arithmetic, multi-threading, graphical user interfaces, etc. It also offers 

Unix-style programming environment including a replay debugger and a time profiler.  

Objective Caml programs can easily be interfaced with other languages, in particular with 

other C programs or libraries. This feature has been extensively used while building our 

wrapper around the Moab C libraries.  

 
3.2 OSKit 
 
3.2.1 Design and Rationale 
 
The Flux research group at the University of Utah has developed OSKit.  It provides a set 

of modularized libraries with straightforward and documented interfaces for the 

construction of operating system kernels, servers, and other core OS functionality. It is 

not an OS in itself and does not define any particular set of “core” functionality, but 

merely provides a suite of components from which real OS’s can be built directly on 

hardware. The OSKit is considered self-sufficient in that it does not use or depend on 

existing libraries or header files installed on the host system.  

  

Building the OSKit is no different than any other user-level system. Installing the 

OSKit causes a set of libraries to be created in a user-defined location. They can then be 

linked into operating systems just like ordinary libraries are linked into user-level 

applications. The most important goal of the OSKit is  to be as convenient as possible for 
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the developer to use. This has led to its modular structure. It is also highly separable in 

that inter-module dependencies are very thin and managed through “glue” layers that 

provide a level of indirection between a component and the services it requires. The 

structure of the OSKit is shown in Figure 3.4. 

  

For usability, it is critical that OSKit components have clean, well–defined 

interfaces. To provide this sort of abstraction, the Flux project adopted a subset of the 

Component Object Model (COM) [22] as a framework in which to define the OSKit’s 

component interfaces. COM is a language-independent protocol that allows software 

components within an address space to rendezvous and interact with one another 

efficiently, while retaining sufficient separation so that they can be developed and 

evolved independently. The obvious advantage of COM is that it makes the OSKit 

interfaces consistent with one another. The other major technical advantages it brings 

about are implementation hiding and interface extension. COM helps us to define 

interfaces independently of their implementation. Hence, several different 

implementations of the same interface can exist together. COM also allows for interface 

extension and evolution. An object can export any number of COM interfaces, each of 

which can be defined independently by anyone with no chance of accidental collisions. 

Given a pointer to any COM interface, the object can be dynamically queried for pointers 

to its other interfaces. This mechanism allows objects to implement new or extended 

versions of existing interfaces safely. One of the other abstraction features of COM that is 

made use of in OSKit is that interfaces can be completely “standalone” and do not require 

any common infrastructure or support code that the client OS must use in order to make 



 19

use of the interfaces. This is markedly different from traditional operating systems like 

BSD or Linux. Consider the networking stacks of these systems. Though they are highly 

modular, each of their interfaces depend on a particular buffer management abstraction 

which are mbufs and skbufs respectively. The OSKit’s corresponding interfaces, on 

the other hand, rely on no particular common implementation infrastructure. 
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Figure 3.4 Sample OSKit Configuration 
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3.2.2 The OSKit Structure 
 

Much of the OSKit code is derived directly or indirectly from existing systems such as 

BSD, Linux, and Mach. The OSKit uses a two pronged approach towards legacy code. 

For small pieces of code, that aren’t expected to change much in the original source base, 

it is simply absorbed into the OSKit source tree, modifying it as necessary. The OSKit 

uses an encapsulation method towards large blocks of code. These include code borrowed 

from existing systems such as device drivers, file systems, and networking protocol 

stacks. The OSKit defines a set of COM interfaces by which the client OS invokes OSKit 

services. The OSKit components implement these services in a thin layer of glue code, 

which in turn relies on a much larger mass of encapsulated code, imported directly from 

the donor OS largely or entirely unmodified. The glue code translates calls on the public 

OSKit interfaces such as the bufio interface into calls to the imported code’s internal 

interfaces. It also in turn translates calls made by the imported code for low-level services 

such as memory allocation and interrupt management into calls to the OSKit’s equivalent 

public interfaces. Although tricky to implement, this simplifies the task of making 

modifications to each block of code. Modifications to blocks of code remain insulated 

from other components. For example, the OSKit’s Linux device driver set has already 

tracked the evolution of the Linux kernel though several versions, starting with Linux 

1.3.68. The encapsulation technique described above has made this relatively 

straightforward. 

 
3.2.3. Overview of OSKit components 
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3.2.3.1 Bootstrapping 
 
Most operating systems come with their own boot loading mechanisms, which are largely 

incompatible with those used by other systems. This diversity is attributed to the fact that 

not much time is spent on designing boot loaders which are relatively uninteresting when 

compared to actual OSs themselves.  The OSKit, on the other hand, subscribes to the 

Multiboot standard [23]. The Multiboot standard provides a simple but general interface 

between OS boot loaders and OS kernels. Hence any compliant boot loader will be able 

to boot any compliant OS. Using the OSKit, it is very easy to create kernels that operate 

with a variety of existing boot loaders that support the Multiboot standard. Another key 

feature of the Multiboot standard is the ability of the boot loader to load additional files in 

the form of boot modules. The boot loader does not interpret the module in any way at 

the time of loading the kernel. It however provides the kernel with a list of physical 

addresses and sizes of all the boot modules. It is upto the kernel to interpret these 

modules in the way it deems fit.  

 

3.2.3.2 Kernel Support Library 
 

The primary purpose of the OSKit’s kernel support library is to provide easy access to the 

raw hardware facilities without obscuring the underlying abstractions. Most of the 

definitions and symbols defined here are highly specific to supervisor-mode code. This is 

in contrast to the most other OSKit libraries that are specific to user-mode code. Another 

difference worth to note is that that most of the code here is architecture specific. No 

attempt has been made to hide machine-specific details so that the client OS may directly 

manipulate these. Other OSKit libraries build upon these machine-specific details and 
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provide higher architecture-neutral interfaces to higher layers. However these machine-

specific details remain directly accessible. 

 The default behavior of the kernel support library is to do everything necessary to 

get the processor into a convenient execution environment in which interrupts, traps and 

other debugging facilities work as expected. The library also locates all associated 

modules loaded with the kernel and reserves the physical memory in which they are 

located. The client OS need only provide a main function in the standard C style. After 

everything is setup, this library calls the client OS with any arguments passed by the boot 

loader. 

 

3.2.3.2 Memory Management Library 
 

Memory management implementation typically used in user space, such as the malloc 

implementation in a standard C library, is not suitable for kernels because of the special 

requirements of the hardware on which they run. For example, device drivers need to 

allocate memory with specific alignment properties and space constraints. To address 

these issues, the OSKit includes a pair of simple but flexible memory management 

libraries. The list-based memory manager, or LMM, provides powerful and efficient 

primitives for managing allocation of either physical or virtual memory, in kernel or user-

level code, and includes support for managing multiple “types” of memory in a pool, and 

for allocation with various type, size and alignment constraints. The address map 

manager, or AMM, is designed to manage address spaces that don’t necessarily map 

directly to physical or virtual memory. It provides support for other aspects of OS 

implementation such as the management of process address spaces, paging partitions or 
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free block maps. Although these libraries can be used in user space, they are specifically 

designed to satisfy the needs of OS kernels. 

 

3.2.3.4 C Libraries 
 

The OSKit provides two different C libraries – one a minimal C library native to OSKit 

and another imported from the FreeBSD C library. The OSKit’s minimal C library is 

designed around the principle of minimizing dependencies rather than maximizing 

functionality and performance. For example the standard I/O calls do not do any 

buffering, instead relying directly on underlying read and write operations. 

Dependencies between C library functions are minimized. This approach is followed 

since the standard C library running on a full-function OS, such as Linux, makes too 

many assumptions to be reliable in a kernel environment. 

 The FreeBSD C library provides an alternative to the OSKit’s minimal C library 

so that sophisticated applications can be built using it. In addition to the standard single 

threaded version of the library, a multi-threaded version is also built which relies on the 

pthread library to provide the necessary locking primitives. Like the minimal C library, 

the FreeBSD C library depends on the POSIX library to provide mappings to the 

appropriate COM interfaces. For example, fopen in the C library will chain to open in 

the POSIX library, which in turn will chain to the appropriate oskit_dir and 

oskit_file COM operations. 
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3.2.3.5 Debugging support 
 
The OSKit provides the developer with a full source-level kernel-debugging 

environment. The OSKit’s kernel support library includes a serial-line stub for the GNU 

debugger, GDB. The stub is a small module that handles traps in the client OS 

environment and communicates over a serial line with GDB running on another machine, 

using GDB’s standard remote debugging protocol.  

 
3.2.3.6 Device Driver Support 
 
One of the most expensive tasks in OS development and maintenance is supporting the 

wide variety of available I/O hardware. The OSKit avoids direct maintenance by 

leveraging the extensive set of stable, well-tested drivers developed for existing kernels 

such as Linux and BSD.  The OSKit uses the technique of encapsulation discussed earlier 

to integrate these various code bases into the OSKit. Currently, most of the Ethernet, 

SCSI and IDE disk device drivers from Linux 2.2.14 are included. Eight character device 

drivers that manage the standard PC console and the serial port are imported from 

FreeBSD in the same way.  

 
3.2.3.7 Protocol Stacks 
 
The OSKit provides a full TCP/IP network protocol stack. It incorporates the networking 

code by encapsulation. The TCP/IP stack is borrowed from the FreeBSD system that is 

generally considered to have a more mature network protocol implementation. This 

demonstrates another advantage of using encapsulation. Two different systems, namely 

Linux device drivers and FreeBSD TCP/IP can coexist with one another. With this 
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approach, it is possible to pick the best components from different sources and use them 

together.  

 However this approach is also fraught sometimes with inefficiency. The 

networking stack is an excellent example of this. When a packet arrives at an OSKit 

node, it is initially picked by the Linux device drivers and represented as the Linux 

packet buffer, skbuff. The OSKit represents all packets as COM bufio objects. Due 

to contiguous nature of Linux packet buffers, they can be directly passed to the FreeBSD 

TCP/IP stack as bufio objects. The FreeBSD code internally repackages them as 

mbufs, which is the FreeBSD abstraction for packet buffers. However, the situation 

reverses in the case of outgoing packets. mbufs consist of multiple discontiguous buffers 

chained together. Hence when they are passed to the Linux driver code as bufio 

objects, the Linux code has to resolve these into contiguous buffers. This mismatch 

sometimes requires extra copying between these two modules on the send path. 

 
3.2.3.8 File Systems 
 
The OSKit incorporates standard disk-based file system code, again using encapsulation, 

this time based on NetBSD’s file systems. The choice of NetBSD was influenced by the 

fact that it had one of the best-separated interfaces of the available systems. FreeBSD and 

Linux file systems are more tightly coupled with their virtual memory systems. 
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3.3 Moab NodeOS 
 

3.3.1 The NodeOS Interface 
 

The NodeOS interface defines the boundary between the EE and the NodeOS. Generally 

speaking, the NodeOS is responsible for distributing the node’s resources among the 

various packet flows, while the EE’s role is to offer AAs a sufficiently high-level 

programming environment. The design of the NodeOS is influenced by three major 

considerations: 

1. The interface’s primary role is to support packet forwarding. Hence the interface is 

designed around network packet flows: packet processing, accounting for resource usage, 

and admission control are all done on a per-flow basis. No single definition is attributed 

to the flow. 

 2. All NodeOS implementations need not export the same set of interfaces. Some 

NodeOS implementations can have advanced features such as hardware transfer of non-

active IP packets. However, these features must be exported to EEs so that they may 

make use of it. The NodeOS may also be extensible. Exactly how a particular OS is 

extended is an OS-specific issue. 

3. Whenever the NodeOS requires a mechanism that is not particularly unique to active 

networks, the NodeOS interface borrows from established interfaces, such as POSIX. 

 

3.3.1.1 NodeOS Abstractions 
 

The NodeOS defines five primary abstractions: thread pools, memory pools, channels, 

files and domains. The first four encapsulate a system’s four types of resources: 
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computation, memory, communication, and persistent storage. The domain abstraction 

encapsulates all the above and is used to aggregate control and scheduling of the other 

four abstractions. 

 

Domains: 

The domain is the primary abstraction for accounting, admission control, and scheduling 

in the system. A domain typically contains the following resources: a set of channels on 

which messages are received and sent, a memory pool, and a thread pool. Active packets 

arrive on an input channel (inChan), are processed by the EE using threads and memory 

allocated to the domain, and are then transmitted on an output channel. One can think of a 

domain as encapsulating resources used across both the NodeOS and an EE on behalf of 

a packet flow. Domain creation is hierarchical. This is used solely to constrain domain 

termination. A domain can be terminated by the domain itself, or by the NodeOS because 

of some policy violation. The domain hierarchy is independent of resource allocation. 

That is, each domain is allocated resources according to credentials presented to the 

NodeOS at domain creation. These resources are not deducted from the parent domain. 

 

 

 

 

 

 

Figure 3.5 A typical NodeOS domain 
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Thread Pools: 

Thread pools are the primary abstraction for computation and exist for accounting 

purposes. A thread pool is initialized at the time of domain creation and threads run “end-

to-end”, i.e., to forward a packet they typically execute input channel code, EE-specific 

code and output channel code. Threads in the pool are implicitly activated and scheduled 

to run in response to certain events like message arrival, timers firing and kernel 

exceptions. The entire domain is terminated if a thread misbehaves. There is no explicit 

operation of killing a thread. 

 

 

 

 

 

 

 

 

 

Figure 3.6 NodeOS Domain Hierarchy 
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memory resources themselves.  Memory pools have an associated callback function that 

is invoked by the NodeOS whenever the resource limits of the pool have been exceeded. 

The corresponding domains are terminated by the NodeOS if the EEs do not handle 

resource violation in a timely manner. Memory pools can be arranged hierarchically 

though this is not used to control the propagation of resources. 

 

Channels: 

Domains create channels to send, receive and forward packets. Some channels are 

anchored in an EE i.e. they are used to send packets from an EE to the underlying 

physical layer and vice versa. They can hence be classified into two types-inChan and 

outChan. When creating an inChan, a domain must specify the following things: (1) 

which arriving packets are to be delivered on this channel; (2) a buffer pool that queues 

packets waiting to be processed by the channel; and (3) a function to handle the packets. 

Packets to be delivered are described by a protocol specification string, an address 

specification string, and a demultiplexing (demux) key. On the other hand the 

requirements for an outChan include (1) where the packets are to be delivered and (2) 

how much link bandwidth the channel is allowed to consume. Another type of channel 

known as cutChan is defined which forwards packets through the active node without 

being processed by an EE. This might correspond to a standard forwarding path that the 

NodeOS implements very efficiently. It can also be created by concatenating an existing 

inChan to an existing outChan. 
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A packet is demultiplexed by specifying the protocol and addressing information. 

For example, the protocol specification “if0/ip/udp” specifies incoming UDP packets 

tunneled through IP. The address specification defines destination-addressing information 

like the destination UDP port number. The NodeOS designers realized that simply 

specifying the protocol and addressing information is insufficient when an EE wants to 

demultiplex multiple packet flows out of a single protocol. Hence a demux key is used 

which is passed on to the inChan. It can specify a set of (offset, length, value, 

mask) 4-tuples. These tuples are compared in an obvious way to the “payload” of the 

protocol. 

 

Files: 

Files are provided to support persistent storage and sharing of data. The file system 

interface loosely follows the POSIX specification and is intended to provide a 

hierarchical namespace to EEs that wish to store data in files. 

 

3.3.2 The Moab NodeOS 
 

The Moab [6] is a C implementation of NodeOS developed at the University of Utah. It 

comprises of a multi-threaded fully-preemptible single address-space operating 

environment implementing the NodeOS abstractions. Moab is not an operating system in 

the strict sense of the word. This is because invocations of NodeOS functions are direct 

function calls and do not “trap” into the OS. 
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Moab is built using the OSKit. This helps it to leverage many of the components 

such as the device drivers, a networking stack, and a thread implementation, as well as a 

host of support code for booting and memory management. The following paragraphs 

describe the Moab implementation of the NodeOS API that help us to understand the 

advantages and disadvantages of using OSKit:  

Threads: 

The implementation of NodeOS threads directly leverages the POSIX thread library. This 

was possible because of the similarity between the NodeOS and POSIX APIs. This direct 

mapping between NodeOS and POSIX threads caused some performance problems. The 

NodeOS’ thread-per-packet model of execution led to creation and destruction of 

pthreads, which imposed a lot of overhead. This was avoided by creating and maintaining 

a cache of active pthreads in every thread pool. 

 

Memory: 

The OSKit made it easy to track the memory allocated and freed within its components 

such as the networking stack. However, it was difficult identifying the correct user to 

charge the memory. Right now, the Moab charges the memory allocated to the “root 

flow”. The alternative would be to charge it to the thread doing the allocation. The 

OSKit’s memory interfaces are being modified to bring it inline with the NodeOS’ needs. 

 

Channels: 

Channels provide the path necessary for execution of a packet flow. Anchored channels, 

namely inChan and outChan, are implemented in two ways depending on their 



 33

protocol specification. Raw interface (“if”) channels are directly implemented over the 

stock Linux device drivers. All the other types of protocols use the OSKit’s socket 

interface and its network stack to deliver UDP/TCP packets to Moab. This only partially 

implements the NodeOS API requirements since direct “IP” packet delivery is not 

supported. Cut-through channels are implemented as unoptimized concatenation of 

NodeOS inChan/outChan pairs and perform no additional protocol processing. 
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Chapter 4 

Implementation of PLAN Router on OSKit 

4.1 Motivation 
 
The OSKit provides us with a platform wherein single address-space based kernels can 

be directly executed on bare hardware. It is with this idea that we proceed to build a 

PLAN router that operates directly over the OSKit. The OSKit provides all the essentials 

required for the router to operate. These include a C library, a TCP/IP protocol stack and 

a pthread library. The OSKit’s modular design helps us in choosing the components we 

would like the router to be integrated with. This modularity also implies configurability. 

Hence, given a choice, we could link the PLAN router with a different set of components 

at system build time. 

 

The PLAN router is built in a vertically integrated fashion over the OSKit in a 

single address space. In a traditional operating system, such as Linux, we tend to 

differentiate between the user space and the kernel space. This is done to operate the two 

levels with different levels of trust. This again is due to the fact that programs loaded and 

unloaded at runtime should be operated only with certain privileges. When a single 

application such as a PLAN router is intended to run on a system, it is no longer 

necessary to differentiate between processes. Hence, the distinction between kernel-space 

and application becomes fuzzy. In our implementation, we will study the effect of 

OSKit’s components on our PLAN router implementation. 
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4.2 Implementation of PLAN router 
 
4.2.1 Porting OCaml to OSKit 
 

The first task involved in the implementation of a PLAN active node on OSKit was the 

porting of the OCaml language to OSKit. A normal install of OCaml on Linux would 

look like in Figure 4.1. 

 

 
 
 
 

 

 

 

Figure 4.1 OCaml Installation on Linux 
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A regular OCaml system is installed over Linux, in order to build the various OCaml 

tools such as ocamlc1, ocamlopt2, etc.  The OCaml-on-Linux compiler (ocamlc or 

ocamlopt) thus built is used to custom-compile OCaml sources to generate a C object 

file instead of compiled object bytecode executables. The objective Caml runtime system 

comprises three main parts: the bytecode interpreter, the memory manager, and a set of C 

functions that implement the primitive operations. In the default mode, the Caml linker 

produces bytecode executables for the standard runtime system, ocamlrun, with the 

standard set of primitives. In the “custom runtime” mode, we may generate a C object file 

that contains the list of C primitives required or an executable file that contains both the 

runtime system and the bytecode for the program.   

 

The OCaml runtime system was built using OSKit libraries. We then use the C 

object file generated above and link it against a runtime system built using OSKit 

components. If we are using the native code compiler, the –custom flag is not 

necessary, as it can directly produce a C object file with the help of the –output-obj 

option. An OSKit interface file is then compiled which initializes the OCaml component. 

This is linked with OSKit libraries and the modified OCaml runtime system to form an 

executable. Using OSKit’s image generating tools, we generate a multi-boot image of this 

kernel. This image is then booted as a kernel using a multi-boot loader such as GRUB 

(Grand Unified Boot-loader). The entire process has been described in Appendix B.

                                                 
1 OCaml bytecode compiler 
2 OCaml native code compiler 
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Figure 4.2 An OCaml based OSKit kernel 
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4.2.2 Integration of PLAN with OSKit 
 
The integration of PLAN with OSKit involved matching all the OCaml interfaces used by 

PLAN with those provided by OSKit. Fixes were required in areas such as file operations 

and usage of loopback interfaces. To fix this, it was decided to convert all file-based 

operations to string operations. Most of these files were configuration files and DNS 

files. PLAN operates its own DNS system which makes use of a file similar to the 

standard ‘/etc/hosts’ file on Unix systems. The PLAN code thus modified was then 

custom compiled to generate object code. This wass then linked against OSKit libraries to 

form an executable that in turn was used to generate a multiboot image. This installation 

is as shown in Figure 4.3. 

 

 

 

 

 

 

 

Figure 4.3 PLAN installation on OSKit  
 

The PLAN router protocol graph as used on OSKit is shown in Figure 4.4. 
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Figure 4.4 PLAN Active Node Protocol graph 
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4.2.3 Integration with the Moab NodeOS 
 
As described earlier, the Moab NodeOS is a C implementation of the NodeOS API. The 

Moab environment is first setup by means of the interface an_moab_setup. This 

function initializes the Moab by first initializing the memory associated with the NodeOS 

flow. The various hardware devices are probed and filesystems initiated. The networking 

framework is initialized and can be configured manually. The Moab now reaches a state 

where its bare setup is done. The NodeOS root flow is now started in this context. The 

parameters passed to it include the root flow thread count and the root flow stack size. 

The function for flow initialization and it’s associated arguments is also passed. The 

various NodeOS components such as resources, credential objects and threads are 

initialized. The setup of Moab is now complete. 

  

With the initialization of Moab complete, the root flow is then fired off as a thread 

in this context. There is no callback associated with the root flow. It can be killed only by 

an explicit call to ani_moab_shutdown. New credentials are created in the root flow 

that may correspond to child flows. A new flow is now created in the context of root 

flow. Since we have only one flow subordinate to the root flow, all the root credentials 

are transferred to the new flow. The flow initialization function and the corresponding 

arguments are now passed to this flow. This flow is used to start the OCaml virtual 

machine. A resource specification is also passed to the flow that specifies the number of 

threads and the stacksize allocated for each thread. A thread is then fired off which starts 

up the Caml flow. This hierarchical structure is shown in Figure 4.5 
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Figure 4.5 Hierarchical structure of NodeOS flows 
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Chapter 5 

Testing and Discussion of Results 

 
The following test framework was used to evaluate our implementation. Figure 5.1 

describes a linear topology used to test the performance of OSKit as a node operating 

system for an OCaml based active node. 

 
 
 
 
 
 

 

 

Figure 5.1 Test topology 
 

The machines used in the above tests were equipped with 530 MHz Pentium III 

processors and 128 MB RAM. Their network interfaces were connected to 100 Mbps 

Ethernet segments. The Caml benchmarking tests were done on a single machine 

featuring both Linux and OSKit versions. Table 5.1 compares results obtained using 

Linux 2.2.13 and OSKit version 20010214. The tests have been performed both with the 

bytecode and native code versions of OCaml. All measurements are made using the 

rdtsr function provided for i386 machines. 

 

Most of the benchmarks are self-explanatory. We observe that the performance provided 

by OSKit is not better than that provided by Linux. 
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Benchmark Test OCaml-bc3/ 
Linux 

(Time in ms)

OCaml-Nat4/ 
Linux 

(Time in ms) 

OCaml-bc/ 
OSKit 

(Time in ms) 

OCaml-Nat/ 
OSKit 

(Time in ms)
Array Access 
1000000 times in a tight 
loop 

876.25 215.992 851.441 199.035

Array Access (Test 2) 
1000000 times after 
unrolling of loops 

757.45 215.891 742.894 199.167

Fibonacci  Series 
N = 32 

1,159.94 140.16 1,151.54 149.053

Hash Access 
With 80000 entries 

1,320.33 692.093 1,084.01 518.831

Heap Sort of 80000 
randomly created entries 

1,876.98 138.048 1,914.63 135.223

Various List operations 
for 16 lists each of size 
10000 

991.441 184.252 990.477 171.724

Matrix Multiplication of 2 
matrices of size 30x30 

5,645.93 198.179 5,824.22 197.17

1000000 Method Calls on 
the same object 

1,429.35 129.09 1,388.04 129.192

Loop overhead for 16 
nested loops 

3,861.07 169.358 3,668.71 170.669

100000 thread 
synchronizations between  
2 producer/consumer 
threads using a mutex and 
a condition variable 

3,649.96 3,436.02 1640.25 1488.68

Generated 900000 
Random numbers 

1,085.74 164.336 1,089.89 164.168

Sieve of Eratosthenes 
Counts primes from 2 to 
8192 , 300 times 

3,202.76 145.933 3,170.74 155.087

String concatenates 40000 
strings(using 
Buffer.add_string) 

84.231 11.286 83.338 11.173

String Append (using the 
string concatenation 
operator) 

44,959.89 43,684.61 41,592.80 41,274.74

 
 

                                                 
3 OCaml Bytecodes 
4 OCaml Native code 

Table 5.1 Comparison of OCaml benchmarks
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5.1 Baseline Performance 
 

We study the performance of our implementation of the PLAN active network node on 

OSKit using the test framework in Figure 5.1 and compare it with PLAN running over 

Linux. The test framework is used as it is for the throughput measurements. However, for 

the latency measurements, a two-node setup is used. Specifically, we measure the 

latencies observed during the execution of the PLAN ping program.  

 

The PLAN ping experiment will serve to demonstrate the difference in latencies 

between Linux and OSKit. It consists of a simple application program, which injects a 

PLAN packet that contains the ping code described earlier. This packet is injected at 

Testnode1. The packet is evaluated at its destination (Testnode10) which is across a 

single hop and sent back to the source. 

 

5.2 Latency measurements 
 

For the above PLAN ping experiment, the results are as shown in Figure 5.2. The PLAN 

ping times have been measured as the average round trip time taken by the packets sent 

from a Linux host to an OSKit router. Each individual test involved 100 round trip times. 

It illustrates the performance of this active protocol both on Linux and OSKit. To enable 

us to compare these figures with standard benchmarks, the ICMP and C-level ping times 

are also shown. The C level ping consisted of a simple UDP client which sends a packet 

to a UDP server that returns the packet back to the client.  All the tests were done with 

minimum packet sizes. It was also noticed that there is a perceptible difference between 
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Figure 5.2 Latency Measurements 
 

 

 

 

 

 

 

 

 

 

Figure 5.3 PLAN ping packet evaluation overhead 
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ping times of the bytecode and native versions of PLAN/OSKit. The Linux version does 

not show such a large difference between the two versions. The time taken for packet 

evaluation is shown in Figure 5.3.  These times reflect the per-packet switching overhead. 

The packet concerned contains the PLAN ping packet code. Figure 5.3 measures the time 

taken by a PLAN Active node to unmarshall the packet, interpret the PLAN code and 

send it over to its next destination, which in our case, is the source.  The processing 

overhead is considerably larger for PLAN/OSKit when compared to PLAN/Linux. 

However this accounts for only a small proportion of the total delay. 

 

In order to further understand the delays seen, we ran an unoptimized version of 

PLAN/OSKit. This version forks an extra thread that waits for packets from the local 

PLAN port. It was noticed that the delays experienced increased considerably in this 

case. These results are tabulated in Table 5.2. This is probably due to the poor 

performance of the OSKit Pthread library.  

 

 

Switch Optimized PLAN Unoptimized PLAN 

PLAN/OSKit – Native Code 5.4 ms 14.3 ms 

PLAN/OSKit – Bytecodes 8.45 ms 37.91 ms 

 

 

 

Table 5.2 Comparison between Optimized and Unoptimized versions of PLAN



 47

5.3 Throughput Tests 
 
5.3.1 Application-level Exchange 
 

The following test framework measures the forwarding capacity of a PLAN node. We 

make use of a linear back-to-back connectivity between 3 nodes in order to compare the 

forwarding performance of a PLAN switch.  The test topology is shown in Figure 5.4.  

 

In order to do these tests, PLAN routers are set up on the three nodes.  We then 

make use of a Caml program that generates load of a given payload on the sender side. 

This program injects these packets into the local PLAN router through its PLAN port. 

The destination of these packets is on the far end of the topology, which is Testnode 4. 

These packets are initially evaluated at Testnode1 and routed through the active network 

by Testnode10. The PLAN router on Testnode 4 later receives them and hands over the 

packets to a receiver program running on Testnode 4 which waits for these packets on its 

PLAN port.  A total of 80,000 packets were sent from Testnode1 through Testnode11 

onto Testnode4. 

 

 

 

 

 

 

 

Figure 5.4 Application level bandwidth tests 
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The results of these tests are as shown in Figure 5.5. As seen from the Figure the 

PLAN/OSKit shows significant loss of packets as compared to the PLAN/Linux switch. 

This could be attributed to a less than tighter integration of PLAN over the OSKit 

framework.   

 

 

 

 

 

 

 

 

 

Figure 5.5 Comparison of forwarding performance of PLAN 
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5.3.2 Router-level Exchange  
 

The tests described here measure the performance achieved by a PLAN networking 

system. It makes use of an inbuilt “bandwidth service” provided with the PLAN router. 

Hence packets are dispatched directly to and from the PLAN routers, avoiding the costs 

of copying to and from the application. The test framework is shown in Figure 5.6.   

 

 

 

 

 

 

Figure 5.6 Router-level bandwidth tests 
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Figure 5.7 Comparison of Routing performance of PLAN 
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Figure 5.8 Comparison of Routing performance of PLAN (using upcalls) 
 

Figure 5.8 illustrates the performance advantage gained by operating PLAN using 

upcalls. The numbers of packets that make it to the receiver also register a significant 

increase in both the cases. In the case of PLAN/Linux, the number of packets received at 

Testnode4 increases by 4 times. The improvement in performance is more marked in the 
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increase over earlier numbers.  
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blasting the PLAN router with 100000 packets. All the other parameters associated with 

the test remained the same. The numbers seen during the test are almost proportionate. 

The results are summarized in Figure 5.9. 

 

Figure 5.9 Comparison of routing performance of PLAN (under lighter load) 
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Chapter 6 

Conclusions and Future Work 

6.1 Summary 
 
We have implemented an active network prototype on a non-conventional experimental 

operating system. We have ported the OCaml runtime system (both bytecode and native 

code versions) to OSKit and built the PLAN execution environment of top of this 

structure. The various components of the system are written in C and OCaml. They are 

ultimately statically linked into the OSKit kernel. This thesis describes the 

implementation of such a system and quantifies the performance obtained by such 

integration.  

  

The performance of OCaml on OSKit has been benchmarked and has been found 

to be not exceedingly better than that of Linux. Most of the benchmarks do not show any 

substantial improvement over their Linux counterparts. This is because most of the OSKit 

uses legacy code used on systems such as Linux or FreeBSD that are bound together by 

glue code. There is also no provision for optimized data-paths for providing improved 

performance. For example, the mismatch between the FreeBSD TCP/IP stack and the 

Linux device driver places an upper bound on its networking performance. Improvement 

in the benchmark performance can be brought about if we are able to integrate such 

components into the OSKit framework. The threads benchmark shown tests the 

synchronization between two producer/consumer threads synchronized by a mutex and 

condition variable. The bytecode overhead associated with Linux is retained into the 

OSKit kernel since the OSKit has to run through all the C primitives associated with the 
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bytecode runtime system. The only way the bytecode overhead is avoided is to compile 

the OCaml sources to native code. 

 

The effectiveness of the implementation was tested by means of injecting code 

carrying PLAN packets into an active network and observing the latency. The latency of 

PLAN/OSKit has been found to be more than that achieved by PLAN/Linux. The 

forwarding capacity of a PLAN node was measured both on Linux and OSKit. The 

results show perceptible difference between the two versions of PLAN – namely, queue-

based and upcall-based. The queue-based version introduces additional synchronization 

overhead. The upcall-based version performs better due to the removal of this overhead. 

In both these versions, the OCaml native threads do not seem to run in parallel on OSKit. 

These threads prevent the execution of other threads during blocking operations. This 

results in the dropping of a number of packets due to filling up of socket buffers on 

OSKit. The OSKit’s structure, though modular and separable in nature has been found 

not thoroughly suitable for an OCaml-based active node.  

 

6.2 Future Work 
 

Another important concept of the Active Networks includes the dynamic deployment of 

services. It may be necessary to quantify the performance limitations of PLAN on such a 

system. Further work is also required in integrating the PLAN execution environment 

with the Moab NodeOS. The integration of the Moab NodeOS should see an 

improvement in network performance over that shown by the OSKit due to the 
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availability of optimized data paths which are executed end-to-end. However it will be 

necessary to map OCaml native threads to NodeOS threads that operate in Moab. 

 

OCaml provides a simple interface to query the status of its garbage collector. 

PLAN has extended this so as to provide for dynamic querying of the GC status of an 

active router. The PLAN/OSKit version can be studied to determine the performance of 

the OCaml garbage collector.   
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Appendix A 

The BlueBox 

In our need for the realization of large-scale active network nodes, the Bluebox is an 

essential tool. The Bluebox, as the name suggests, consists of a set of neatly stacked 

machines laid out in a blue colored box-on-wheels. It came out of an earlier research 

project at ITTC, KU. It consists of a compact arrangement of 13 nodes with one of them 

functioning as a control node. The control computer is a 600 MHz PIII processor with 

256MB of memory. In addition to these, it has a 20GB hard disk and can be connected to 

the other testnodes through twelve 100-Mbps, Ethernet ports. A Netgear 516 16-porter 

unmanaged Ethernet switch is used to lay out the physical connectivity between the 

testnodes and the control computer. 
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The testnodes themselves are each equipped with a 533 MHz PIII processor and a 20 GB 

hard disk. Each of these testnodes also carries 128 MB RAM on it. All the testnodes are 

equipped with a minimum of two 100 Mbps Ethernet ports. The primary port is used to 

connect to the Netgear switch that enables it to maintain connectivity with the control 

computer at all times, which is essential for it to function as a management port. Four of 

these machines also have 4-port Ethernet cards on them, which enables us to create a 

number of complex topologies among the testnodes. The secondary ports on these nodes 

are used to create these complex topologies. A Cisco C2924 switch, with 24 ports, 

capable of managing these connections is also provided. All the machines are connected 

to a single LCD monitor and a keyboard through an APEX 16-port KVM switch. A 

WaveLAN access port is also provided which in conjunction with two laptops completes 

the emulation of a complex network with a host and a sink as well. The physical 

interconnections of the Bluebox are shown in Figure A. The secondary connections are 

not shown in the figure. 

 

The BlueBox had been demonstrated at the DARPA Active Network Conference 

at Atlanta, Georgia in December 2000 and has won laurels for its compact structure. It 

will be the primary tool for constructing a large-scale active network testbed at ITTC. 
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Appendix B 

Building of PLAN/NodeOS/OSKit 

OSKit: 
 
1. Located at /projects/IANS/oskit-20010214 

2. Version 20010214 

3. Changes incorporated in modified libraries: 

��liboskit_threads_KU.a 

��liboskit_startup_KU.a 

��liboskit_linux_dev_KU.a 

4. All changes have been recorded in README_KU files in respective component 

directories 

5. Extra libraries to measure some net statistics 

��liboskit_freebsd_net_KU.a 

��liboskit_linux_dev_KU_stats.a 

6. Begin by using the makefiles provided to build standard OSKit system 

- cd /projects/IANS/oskit-20010214 

- ./configure --prefix=/projects/IANS/oskit-20010214 -enable-examples 

- make all 

- make install 

7. Use the new makefiles listed in the toplevel file README_KU to build the above 

modified libraries 

 
OCaml: 
 
1.   Version 3.00 (Uses pthreads to implement multi-threading) 
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2. Original source code available at /projects/IANS/caml-world/ocaml-3.00 

3. Build process: 

��cd /projects/IANS/caml-world/ocaml-3.00 

��./configure –prefix /projects/IANS/caml-world/3.00 –with-pthread 

��make world 

��make opt 

��umask 022 

��make install 

4. Camlp4 

��cd /projects/IANS/caml-world/camlp4-3.00 

��./configure –prefix projects/IANS/caml-world/3.00 

��make world 

��make opt 

��make install 

5. Modified OCaml runtime system available at /projects/IANS/caml-world/ocaml-3-on-

oskit 

��Run configure-oskit in the toplevel directory 

��Build the following runtime libraries using the Makefiles created 

��libcamlrun.a in the directory, byterun 

��libasmrun.a in the directory, asmrun 

��Other OS dependent libraries to be rebuilt include: 

��libunix.a in the directory, otherlibs/unix 

��libnums.a in the directory, otherlibs/nums 
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��libthreads.a and libthreadsnat.a in the directory 

otherlibs/systhreads 

��libstr.a in the directory otherlibs/str 

��Build process: 

��cd /projects/IANS/caml-world/ocaml-3-on-oskit 

��./configure-oskit 

��cd byterun; make libcamlrun.a 

��cd asmrun; make libasmrun.a 

��cd otherlibs/systhreads; make –f Makefile_KU libthreads.a 

��cd otherlibs/str; make libstr.a 

��cd otherlibs/unix; make libunix.a 

��cd otherlibs/nums; make libnums.a 

6. OCaml with wrappers around NodeOS API is located at /users/ravi/thesis/ocaml-3.00 

7. This version may be used if building a Caml EE that needs to access to NodeOS API. 

 
PLAN: 
 
1. Version 3.21 

2. Original PLAN code located at /projects/IANS/plan-3.21. Builds using ocaml-3.00 and 

camlp4-3.00.  

��cd /projects/IANS/plan-3.21 

��make all 

3. The modified PLAN system code located in /projects/IANS/plan-on-oskit. Code may 

have to be modified to run on different machines. 

��Make all 
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��./scr.sh (to custom compile PLAN sources) 

 
Moab NodeOS: 
 
1. Version 20010214 

2. Original source code located at /projects/IANS/nodeos-20010214 

3. Build process: 

��./configure --with-oskit=/projects/IANS/oskit-20010214 --host=i386-oskit 

��make all 

4. Libnodeos.a will be the library built 

 
Bringing together the above components: 
 
1. Makefile located at /projects/IANS/oskit-20010214/examples/nodeos_plan_thesis 

2. Building it will link all libraries with an interface file. The interface file is a C file that 

initializes the Moab machine on OSKit. 

��make 

3. The executable formed is used to create a multiboot image using the script provided 

in the OSKit ‘bin’ directory. 

 
Booting the image: 
 
1. The image is copied onto the hard disk of the machine. 

2. The image is booted using a GRUB bootloader.  

3. Version 0.5.92 

4. Source is located at /projects/IANS/oskit_utils/grub-0.5.92 

5. A Grub floppy is prepared  

6. GRUB commands: 



 62

- kernel  = (hd0,0)/Plan_Image [any options] 

- This command loads the primary multiboot image from a file. 

- boot 

- This command boots the kernel loaded through ‘kernel’ command and also 

loads any modules needed by the kernel. 

4. The exact parameters of the ‘kernel’ command depend on the partitions in the hard 

disk and file name of the image. The bootloader passes any options it receives to the 

OSKit kernel that in turn passes it to the OCaml virtual machine. 

 
Fixes to various components: 
 
1. OSKit: 

Threads Library 

File: threads/osenv_lock.c 

The following functions were commented: 

osenv_process_lock 

osenv_process_unlock 

osenv_process_locked 

 

File: threads/osenv_sleep.c 

The following functions were commented: 

osenv_sleep_init 

osenv_sleep 

osenv_wakeup 

 

Startup Library:  
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File: startup/start_conf_network.c 

This file has to be modified to suit the Ethernet interfaces for a particular machine 

 

2. PLAN: 

PLANport makes use of loopback address. This has been changed to make use of the 

interface INADDR_ANY since OSKit does not support the loopback interface. 

All file operations changed to string operations 

 

3. OCaml: 

File: byterun/debugger.c 

Changed ‘wait’ system call to map to that of OSKit. 

File:byterun/sys.c 

Changed ‘system’ function to return 1. 

File:asmrun/sys.c 

Changed ‘clock’ function to return 1 

File:otherlibs/unix/getgroups.c 

Changed ‘getgroups’ system call to return 1 

File:otherlibs/unix/getlogin.c 

Changed ‘getlogin’ to return 1 

File:otherlibs/unix/nice.c 

Changed ‘getpriority’ and ‘setpriority’ to return 1 

File:otherlibs/unix/setsid.c 

Changed ‘setsid’ to return 1 
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File:otherlibs/unix/signals.c 

Changed ‘sigpending’ to return 1 

File:otherlibs/unix/sioc.c 

Changed the function ‘unix_siocgifhwaddr’ to return 1. 

File:otherlibs/unix/wait.c 

Changed ‘wait’ system call to map to that of OSKit. 
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